Nonorientable regular embeddings of graphs of order p2
نویسندگان
چکیده
In [J. Algeb. Combin. 19(2004), 123–141], Du et al. classified the orientable regular embeddings of connected simple graphs of order pq for any two primes p and q. In this paper, we shall classify the nonorientable regular embeddings of these graphs, where p 6= q. Our classification depends on the classification of primitive permutation groups of degree p and degree pq but is independent of the classification of the arc-transitive graphs of order pq.
منابع مشابه
Classification of nonorientable regular embeddings of complete bipartite graphs
A 2-cell embedding of a graph G into a closed (orientable or nonorientable) surface is called regular if its automorphism group acts regularly on the flags mutually incident vertex-edge-face triples. In this paper, we classify the regular embeddings of complete bipartite graphs Kn,n into nonorientable surfaces. Such a regular embedding of Kn,n exists only when n = 2p a1 1 p a2 2 · · · p ak k (a...
متن کاملTriangular embeddings of complete graphs
In this paper we describe the generation of all nonorientable triangular embeddings of the complete graphs K12 and K13. (The 59 nonisomorphic orientable triangular embeddings of K12 were found in 1996 by Altshuler, Bokowski and Schuchert, and K13 has no orientable triangular embeddings.) There are 182, 200 nonisomorphic nonorientable triangular embeddings for K12, and 243, 088, 286 for K13. Tri...
متن کاملQuadrangular embeddings of complete graphs∗
Hartsfield and Ringel proved that a complete graph Kn has an orientable quadrangular embedding if n ≡ 5 (mod 8), and has a nonorientable quadrangular embedding if n ≥ 9 and n ≡ 1 (mod 4). We complete the characterization of complete graphs admitting quadrangular embeddings by showing that Kn has an orientable quadrilateral embedding if n ≡ 0 (mod 8), and has a nonorientable quadrilateral embedd...
متن کاملNon-existence of nonorientable regular embeddings of n-dimensional cubes
By a regular embedding of a graph K into a surface we mean a 2-cell embedding of K into a compact connected surface with the automorphism group acting regularly on flags. Regular embeddings of the n-dimensional cubes Qn into orientable surfaces exist for any positive integer n. In contrast to this, we prove the non-existence of nonorientable regular embeddings of Qn for n > 2.
متن کاملNonorientable hamilton cycle embeddings of complete tripartite graphs
A cyclic construction is presented for building embeddings of the complete tripartite graph Kn,n,n on a nonorientable surface such that the boundary of every face is a hamilton cycle. This construction works for several families of values of n, and we extend the result to all n with some methods of Bouchet and others. The nonorientable genus of Kt,n,n,n, for t ≥ 2n, is then determined using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010